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LETTER TO THE EDITOR 

Monte Carlo renormalisation group approach to multifractal 
structure of growth probability distribution in DLA 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 14 March 1988 

Abstract. A Monte Carlo renormalisation group method is presented to study the fractal 
structure of a DLA cluster. This method converges very rapidly with an increase in the 
size of the cell. Applying this technique to the DLA grown on the square lattice, the scaling 
structure of the growth probability distribution in the surface layer is calculated. An infinite 
set of generalised dimensions D ( q )  and the a-f  spectra are found. We estimate that the 
maximum value of the generalised dimension and the surface fractal dimension are 
0, = 0.5 + 0.05 and Do = 1.5 + 0.05, up to the scale factor b = 30, in excellent agreement 
with the conjecture by Ball. 

The diffusion-limited aggregation (DLA) cluster is one of the most intensively studied 
random fractals (Witten and Sander 1981, Meakin 1983, Family and Landau 1984, 
Stanley and Ostrowsky 1985, Pietronero and Tosatti ,1986, Stanley 1986, Herrmann 
1986). Theoretical, computational and experimental results were systematically ana- 
lysed using the scaling ideas. The renormalisation group (RG) method provides a 
general framework for concepts such as universality and scaling in critical phenomena 
(Wilson and Kogut 1974, Burkhardt and van Leeuwen 1982). Gould et al (1983) have 
derived the fractal dimension for DLA by making use of the position-space renormalisa- 
tion group method. Kolb (1987) has made an attempt at a Monte Carlo renormalisation 
for the growth process. Since there was no Hamiltonian formulation of DLA, they 
adopted the position-space renormalisation group approach in which the change in 
connectivity of the cluster was determined upon repeated length rescaling. 

It is well known that an aggregate cannot be fully characterised only by its fractal 
dimension. Meakin et al (1986), Halsey et al (1986) and Amitrano et al (1986) have 
recently shown that the surface of DLA requires an infinite hierarchy of fractal 
dimensions for its characterisation. They have presented the multifractal structure of 
the growth probability distribution from numerical experiments. Nagatani (1987a, b, c) 
has presented a real-space renormalisation group method for calculating the multifrac- 
tality of the growth probability distribution where a small-cell renormalisation was 
applied with the scale factor b=2 ,3 .  Hayakawa et a2 (1987) have calculated the 
multifractality on the off -lattice by using the more accurate numerical technique. Ohta 
and Honjo (1988) have presented the a-f  spectra from the solidification experiment. 

In this letter, we present a Monte Carlo renormalisation method to derive the 
multifractality of the growth probability distribution. We restrict ourselves to the DLA 

problem on the square lattice. We extend the small-cell renormalisation method to 
larger-cell renormalisation because small-cell renormalisation gives somewhat inaccur- 
ate critical exponents. 
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We describe the DLA process in a discrete electrostatic language. The process is 
characterised by the theorem of minimum dissipation energy. We consider the dissipa- 
tion energy in place of the Hamiltonian. The dissipation energy is given by 

I 

where ui indicates the conductance of bond i, Ei is the electric field on the bond i and 
E,  is the total voltage drop of the system. The first expression represents the summation 
of dissipation energy on each bond over total bonds within the system and the second 
expresses this in terms of the surface conductance a,,, where the total current carrying 
through the surface layer of the aggregate is given by Jt = Z ai,Eis. By using a decimation 
method, one may write the dissipation energy in terms of the coarse-grained variables 
ai, , E is on the new lattice with the lattice spacing b ( b  is the scale factor): 

The surface conductance U is transformed to a’. This surface conductance plays the 
role of the so-called coupling constant in the Hamiltonian of phase transitions. We 
can obtain the renormalisation group equation: 

a’= R(a ) .  ( 3 )  

On the small-cell renormalisation, (3) has a single stable fixed point, consistent with 
the minimum principle of the dissipation energy. We consider the renormalisation 
procedure for deriving the RG equation (3). We define the bonds on the surface as 
the growth bonds which can be successively grown. The surface conductance is defined 
as the conductance of the growth bond. Cover all the space of the square lattice by 
cells of edge b (scale factor), each containing 2b2 bonds. After a renormalisation 
transformation these cells play the role of ‘renormalised’ bonds. On the renormalised 
lattice, the surface conductance is transformed from the bare value to the renormalised 
value. The renormalised surface conductance will be assumed to be given by the most 
probable value 

where CO represents the probability of a particular configuration a appearing and a& 
is the total conductance of the cell with the configuration a. After renormalisation, 
the growth probability Pi (L)  on any growth bond i is given by 

pi ( L)  = Pp,i p p  ( L/ b ) ( 5 )  

where L represents the size of the system, b is the scale factor and pp , i  indicates the 
growth probability of the growth bond i within the cell p. The cell’s growth probability 
pp,i is represented by a function of the surface conductance, depending on the configur- 
ation of the cell. After many repeated renormalisations, the growth probability assigned 
to each growth bond is represented by a random multiplicative process of the cell’s 
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growth probabilities evaluated at the fixed point. In the limit of L sufficiently large, 
an infinite hierarchy of generalised dimensions D ( q )  is given by 

\ i  t 

where ( ) indicates the configurational average and pf,i represents the cell’s growth 
probability evaluated at the fixed point. 

By making use of a Monte Carlo technique, we evaluate the configurational average 
in (4) and ( 6 ) .  A cell of the type used here is shown in figure l (a) .  We explain a 
procedure to make a Monte Carlo realisation for the growth bond. We apply a unit 
voltage between the top and bottom of the cell shown in figure l (a ) .  The dielectric 
breakdown proceeds from the bottom to the top. So the electrostatic problem is solved 
under the boundary condition by using the relaxation method. A growth probability 
proportional to the current is then assigned to the perimeter bond (growth bond). The 
interface proceeds to the top according to the growth probability, where the breakdown 
occurs one by one. The breakdown process continues until the interface of the aggregate 
connects with the top of the cell (see figure 1). The break bond and the growth bond 
are indicated by the bold and wavy lines. The pattern of the cell, obtained at each 
step of the breakdown process, corresponds to a configuration of the cell which is 
renormalised as the growth bond. This breakdown process is repeated N times. The 
total conductance of the cell and the growth probability distribution within the cell 
are calculated at each step of the breakdown. The configurational averages in (4) and 
( 6 )  are approximated by averaging over N x M Monte Carlo realisations: 

where M indicates the number of steps until the aggregate reaches the top of the cell. 
The number of bonds within the aggregate, when the breakdown stops, is given by 

+ 

I f )  ( P i  I d )  

Figure 1. Illustration of the dielectric breakdown process within the cell ( b  = 3) on the 
square lattice. Break, growth and unbroken bonds are respectively indicated by bold, wavy 
and light lines. The breakdown process proceeds one by one (a + b + c -* d + e +f). 
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M + 1. The surface conductance U* at the fixed point is found by the iteration method. 
Firstly, we assume an appropriate value of surface conductance. We find the most 
probable value of the total conductance of the cell. Secondly, by replaying the initial 
value with the obtained value, we continue to obtain iteratively the value of the surface 
conductance. The surface conductance approaches the fixed value. This convergence 
of the surface conductance is granted by the stable fixed point consistent with the 
minimum theorem of the dissipation energy. By using the surface conductance obtained 
here as the fixed point, we can obtain the growth probability of the cell via (7). Table 
1 shows the generalised dimensions D ( q )  for b = 5, 10, 15, 20, 30. 

Table 1. Values of Dq for DLA obtained from the Monte Carlo renormalisation group 
method. 

b 5 10 15 20 30 

N 100 100 30 20 10 

5.522 
5.187 
4.695 
3.922 
2.664 
1.458 
1.033 
0.936 
0.843 
0.778 
0.731 
0.693 
0.663 
0.637 
0.614 
0.595 
0.478 

6.381 
6.028 
5.511 
4.682 
3.212 
1.465 
1.030 
0.939 
0.855 
0.793 
0.744 
0.702 
0.667 
0.635 
0.608 
0.583 
0.451 

6.274 
5.939 
5.446 
4.658 
3.302 
1.477 
1.039 
0.942 
0.864 
0.806 
0.760 
0.720 
0.685 
0.654 
0.626 
0.602 
0.472 

6.158 6.655 
5.862 6.381 
5.424 5.975 
4.715 5.310 
3.416 4.012 
1.486 1.505 
1.043 1.047 
0.945 0.957 
0.868 0.888 
0.807 0.832 
0.755 0.782 
0.709 0.736 
0.671 0.695 
0.639 0.662 
0.612 0.634 
0.590 0.61 1 
0.484 0.507 

Our method converges very rapidly with an increase in the size of the cell. We 
compare our result with other work (Amitrano et a1 1986, Hayakawa et a1 1987, Ohta 
and Honjo 1988). Our result and that of Amitrano et a1 are obtained for the square 
lattice. The results of Hayakawa et al and Ohta and Honjo were obtained for off-lattice. 
The surface fractal dimension Do agrees with Amitrano et al. In our result, the surface 
fractal dimension is also equivalent to Dm+l. However, our result obtained from lattice 
DLA does not agree with that obtained from off-lattice DLA. For the fractal dimension 
df = D,+ 1, our result agrees with the conjecture (df = 3) by Ball (1986). The information 
dimension D, agrees with the other work. 

The a-f  spectra for b = 30 are shown in figure 2 by the full curve. Ohta and Honjo’s 
result obtained from experimental data is indicated by the broken curve. The height 
of the curve is a little lower than the off-lattice result. There is the difference between 
our result and Ohta and Honjo’s data. This is due to the difference between the lattice 
and the off-lattice. 

In summary, we present the Monte Carlo renormalisation method to derive the 
multifractal structure of the growth probability distribution for DLA on the square 
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a 

Figure 2. The a-f spectra for DLA. The full curve indicates our result on the square lattice. 
The broken curve represents Ohta and Honjo’s experimental data. 

lattice. This method gives quick convergence with an increase in the cell size. With 
relatively small cells, we obtain values in excellent agreement with the large-size Monte 
Carlo simulation result. 
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